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The transition to unsteady flow and the dynamics of moderate-Reynolds-number
flows in unbounded and wall-bounded periodic arrays of aligned cylinders are ex-
amined using lattice-Boltzmann simulations. The simulations are compared to exper-
iments, which necessarily have bounding walls. With bounding walls, the transition
to unsteady flow is accompanied by a loss of spatial periodicity, and the temporal
fluctuations are chaotic at much smaller Reynolds numbers. The walls, therefore,
affect the unsteady flows everywhere in the domain. Consistency between experiments
and simulations is established by examining the wake lengths for steady flows and
the fundamental frequencies at higher Reynolds numbers, both as a function of the
Reynolds number. Simulations are used to examine the velocity fluctuations, flow
topologies, and the fluctuating forces on the cylinders.

1. Introduction
The lattice-Boltzmann method has recently gained popularity in computing finite-

Reynolds-number flows in complex geometries, such as fixed arrays of solid particles
(Koch & Ladd 1997; Ladd 1994a; Maier et al. 1998) and channel flows in which
a relatively small number of particles are suspended and free to move (Qi 1999;
Aidun, Lu & Ding 1998). Lattice-Boltzmann simulations of finite-Reynolds-number
suspensions with enough particles to observe continuum behaviour have yet to be
performed, but they will become feasible with the increasing availability of powerful
computational resources. The interpretation of such simulations will be facilitated by
an understanding of how fluid inertia at moderate Reynolds numbers affects flows in
much simpler geometries.

The transition to unsteady flow in porous media has important practical impli-
cations for dispersion and heat and mass transfer. Unsteady flows typically occur
at Reynolds numbers where convective transfer dominates molecular diffusion, i.e.
the Péclet number, Pe = Reν/Dm, is much greater than one. Here, Re = Ua/ν
is the Reynolds number, where a is the particle radius, U is the average velocity, ν
is the fluid kinematic viscosity, and Dm is the tracer molecular diffusivity. In liquids,
Dm/ν � 1, and hence the Péclet number may be large even when the Reynolds num-
ber is small. However, in gases, Dm/ν = O(1) and, hence, Pe = O(Re), so transport at
large Péclet numbers is accompanied by finite-Reynolds-number hydrodynamics.

Simulations of moderate-Reynolds-number flows in close-packed arrays of spheres
show that unsteady flows can exist at Reynolds numbers as small as approximately 30
(Hill, Koch & Ladd 2001b). Temporal velocity fluctuations will modify the thickness
of thermal and concentration boundary layers at solid surfaces, as well as mix fluid
that would otherwise be bounded by closed streamlines. These will change the rates
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of heat and mass transfer, and tend to favour mechanical dispersion over hold-up
dispersion (Koch & Brady 1985).

Most computational studies of finite-Reynolds-number flows in porous media
have focused on the steady or time-averaged drag force on ordered and random
arrays of cylinders and spheres (Hill et al. 2001a, b; Maier et al. 1998). Koch &
Ladd (1997), Ghaddar (1995) and Bittleston (1986) have examined the transition to
unsteady flow in two-dimensional arrays of aligned cylinders using lattice-Boltzmann,
finite-element and finite-difference methods, respectively. Bittleston also performed
experiments to visualize steady wakes and to investigate flows that were forced with an
oscillating pressure gradient. However, no quantitative comparisons of computations
and experiments have been made, particularly concerning details of the transition
to unsteady flow and the effects of bounding walls. This is due, in part, to the
difficulty of obtaining such detailed information from experiments, as well as the
high computational cost of accurately computing finite-Reynolds-number flows and
dispersed two-phase flows at continuum length scales.

Since the dynamics of unsteady moderate-Reynolds-number flows depend on the
underlying spatial velocity fluctuations, one means of testing the lattice-Boltzmann
method at moderate Reynolds numbers, without having to directly compare the
computed velocity fields with experiments, is to compare with experiments the critical
Reynolds number for the transition to unsteady flow and the fundamental frequencies
of the ensuing dynamics. These quantities are considerably easier to obtain from
experiments, and, together, they allow both the temporal and spatial accuracy of the
computations to be tested quantitatively.

The goal of this work, therefore, is to observe and quantify the dynamics of
moderate-Reynolds-number flows using the lattice-Boltzmann method, and in doing
so to examine how the simulations compare with experiments. The two-dimensional
geometry used in this study provides a relatively simple and convenient means of
comparing simulations with experiments. To avoid the complications of symmetry
breaking, the pressure gradient is directed so the angle between the spatially averaged
velocity and the primary axis of a square array of aligned cylinders is π/6. Compar-
ing simulations and experiments requires simulations to be performed in which an
otherwise unbounded periodic array of aligned cylinders is bounded by the walls of
a straight channel.

An important consequence of spatial periodicity is that, when the flow through
such an array is unsteady, there are fluctuating components of the average velocity in
all directions. These are incompatible with the presence of bounding walls, and hence
significant differences between simulations of unsteady moderate-Reynolds-number
flows in unbounded periodic arrays of cylinders and wall-bounded flows are expected.
For steady flows, the spatial accuracy of the simulations is tested by comparing with
experiments the dependence of the length of the recirculating flow in the wakes of the
cylinders upon the Reynolds number. At larger Reynolds numbers, the fundamental
frequencies of the temporal fluctuations are compared, and consequently the bounding
walls are found to have a significant effect on the spatial and temporal development
of the flows.

The lattice-Boltzmann method and the computational methodology are described
in §§ 2 and 3, respectively. The numerical accuracy of the simulations is dealt with in
§ 4, particularly the effects of fluid compressibility, which are found to be important
in this work because of the cross-stream pressure gradient. The experimental and
computational results are presented in the remaining §§ 5–10; these address the
experiment, the topology of the steady flows, dynamics, the topology of the unsteady



Flow in a wall-bounded porous medium 317

flows, velocity fluctuations, and the drag forces on the cylinders, respectively. A
summary follows in § 11.

2. The lattice-Boltzmann method
The lattice-Boltzmann method used in this work is discussed in detail by Ladd

(1994a,b), and hence only a brief description is given here. Approximate solutions of
the incompressible Navier–Stokes equations are sought from the moments of a dis-
cretized fluid-particle velocity distribution function. In three dimensions, there are 18
fluid-particle population densities at each node of a cubic lattice that extends through-
out the computational domain. The population densities correspond to velocities in
the directions to the six nearest and twelve next-nearest neighbouring lattice nodes. In
this work, a three-dimensional formulation is used to compute two-dimensional flows
by setting the length of the computational domain in the third spatial dimension (the
z-direction) to one lattice unit, and applying periodic boundary conditions.

At each time step, the population densities are updated by performing collision and
streaming steps, which relax the fluid-particle velocity distribution function toward
equilibrium, and in doing so approximate solutions of the incompressible Navier–
Stokes equations on macroscopic length and time scales. The pressure and velocity are
obtained from the zeroth and first moments of the fluid-particle velocity distribution
function and the ideal-gas equation of state relating the density to the pressure.
Compressibility errors are of the order of the Mach number squared, which can
be kept small while increasing the Reynolds number by either decreasing the fluid
viscosity or increasing the ratio of the cylinder radius to the lattice-node spacing.

The kinematic viscosity and sound speed are made dimensionless with the lattice-
node spacing and the time step. In this work, the dimensionless kinematic viscosity and
sound speed are 0.01 and 1/

√
2, respectively. This choice is based on considerations

of numerical stability and computational efficiency (Ladd 1994a). In simulating flow
past a sphere with a radius of 1 mm and a fluid kinematic viscosity of 10−6 m2 s−1, for
example, the lattice-Boltzmann time step corresponds to 10−4 s and the sound speed
is 0.707 m s−1. While this sound speed is low, the Mach number is still sufficiently
small (approximately 0.014) at a Reynolds number of 10, for example, for the fluid
to be considered incompressible. Note also that 104 time steps are required for
each characteristic viscous time a2/ν. This example shows that the lattice-Boltzmann
method tends to provide excellent time resolution, but does become limited at larger
Reynolds numbers by spatial resolution and the fluid’s compressibility. In practice,
poor spatial resolution tends to coincide with, or is preceeded by, a loss of numerical
stability, but compressibility artifacts are more difficult to identify (see § 4).

Boundary nodes, which represent the surface of the cylinders, are placed halfway
along the links between the lattice nodes that intersect the cylinder surfaces. To ensure
that the fluid velocity is zero at the cylinder surfaces, the fluid-particle population
densities are propagated in the opposite direction to that from which they approach
the boundary nodes. The hydrodynamic drag force on the cylinders is calculated by
summing the impulses exerted on the cylinders by the fluid particles. As a result of
the cubic lattice, the cylinders are not exactly cylindrical, and therefore an effective
hydrodynamic radius must be determined by finding the small correction to the
nominal cylinder radii of j + 0.5 lattice units (j = 0, 1, 2 . . .) required for the Stokes-
flow drag force on the cylinders in dilute square arrays to agree with the theories
of Hasimoto (1959) and Sangani & Acrivos (1982). In this work, with the fluid
kinematic viscosity equal to 0.01, and for cylinders with their centres at lattice nodes,
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the effective hydrodynamic radii of cylinders with nominal radii larger than 2.5 lattice
units are j + 0.8 lattice units (j = 3, 4, 5 . . .) (Ladd 1994b; Koch & Ladd 1997).

3. Simulation methodology
The porous media considered in this work are square arrays of impermeable

cylinders with a solid volume fraction

c = n πa2 = π(a/L)2, (1)

where n is the cylinder number density, a is the cylinder radius, and L is the cylinder
separation. Most of the simulations of flows in an unbounded periodic array of
cylinders were performed with a single unit cell. However, to test the stability of these
flows to disturbances with longer wavelengths, computations with four unit cells were
performed. The nominal solid volume fraction of all the arrays considered in this
work is 0.2.

Simulations with 26 cylinders in the computational domain and with bounding
walls at y = ±H/2 were also performed. Here, H is the width of the channel with
walls parallel to the x-axis. The coordinate systems and the positions of the cylinders
in the domains are shown in figure 1. Note that the primary axis of the cylinder
array is directed at an angle of π/6 from the walls, and hence the effective length
of the repeating unit cell in the direction perpendicular to the channel walls is
L sin (π/6) = L/2, which is 1/10th of the channel width. This choice was based on
a compromise between minimizing the number of cylinders used in the experiment
and simulations, and minimizing the direct influence of the walls on the bulk flow.
While the underlying geometry of the cylinder array is not continuous across the
left- and right-hand sides of the domain, visualizations of the flows (see figure 19,
for example) show that the slight irregularity has a small effect on the resulting fluid
velocity disturbances.

For the unbounded periodic arrays of cylinders, the x- and y-directions correspond
to the (1, 0) and (0, 1) directions of the arrays, respectively. For the wall-bounded
arrays, however, the x- and y-directions correspond to the directions parallel and
perpendicular to the walls, respectively (see figure 1). In both cases, the directions
parallel and perpendicular to the average velocity will be referred to as the streamwise
and cross-stream directions, denoted with the subscripts ‖ and ⊥, respectively.

The lattice-Boltzmann method, described in the previous section, is used to compute
the fluid velocity and the drag forces on the cylinders. The fluid is typically accelerated
from rest by a constant body force. This is equivalent to applying a constant pressure
gradient to the fluid, and, furthermore, allows periodic boundary conditions to be
applied.

The Reynolds number is defined as

Re = |〈u〉|a/ν, (2)

where ν is the fluid kinematic viscosity, and 〈u〉 is the temporally and spatially
averaged velocity, which is equivalent to the so-called superficial velocity measured in
an experiment by dividing the volumetric flow rate by the cross-sectional area of the
containing vessel. The average velocity in the space occupied by the fluid is simply
〈u〉/(1− c).

At finite Reynolds numbers, the average velocity is not necessarily in the same direc-
tion as the average pressure gradient. When considering flow in an unbounded array
of cylinders, the applied body force is directed at an angle θp from the x-axis – the (1,0)



Flow in a wall-bounded porous medium 319

y

(a)

y 2a

L

xθ

H

(b)

2a

L

x

22 19

14

13

18
21

20 17

16

15
11

12

7

6

5 26

25

10

9

4

24

27
23

3

2

8

Figure 1. The computational domains used for the lattice-Boltzmann simulations of flows in (a) a
wall-bounded array of cylinders and (b) an unbounded periodic array of cylinders. In both cases,
the primary axis of the arrays is directed at an angle of π/6 from the flow direction. Periodic
boundary conditions apply at the bounds of the domains (dashed lines), with the no-slip boundary
condition at the top and bottom of the domain shown in (a).

direction of the square array – to achieve an angle θu between the spatially averaged
velocity and the x-axis of π/6. Note that θu = arctan (〈uy〉/〈ux〉) cannot be specified
a priori, and hence trial-and-error was required to determine the appropriate θp to
achieve a given θu. In general, the values of θu obtained were within approximately 3%
of π/6. When more accurate results were required, linear or quadratic interpolation
was used to determine properties of the flows at θu = π/6.

The dimensionless drag force on the cylinders is defined as

F = |〈f〉|/(µ|〈u〉|), (3)

where 〈f〉 is the spatially and temporally averaged drag force (per unit length) on the
cylinders, and µ is the fluid dynamic viscosity. At steady state, the average drag force
multiplied by the cylinder number density is equal to the average pressure gradient.
From (1) and (3), it follows that the magnitude of the average pressure gradient is

|〈∇p〉| = cLµνF |〈u〉|/(πa2). (4)

When the flow is unsteady at long times, the fundamental frequency of the fluctuat-
ing spatially averaged velocity and drag forces on the cylinders may be characterized
by a Strouhal number,

S = ω1a
2/(νRe) = ω1a/|〈u〉|, (5)

where ω1 is the fundamental frequency. In this work, the fundamental frequency will
more often be non-dimensionalized with the inverse of the viscous time scale a2/ν.
This choice reduces the uncertainty in the reported experimental results, since the
errors in a and ν are fixed, at least for the experiments performed with the same water
temperature and, hence, viscosity, whereas the uncertainty in |〈u〉| has contributions
from systematic and statistical errors in the measured discharge flow rate, or Reynolds
number.
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4. Analysis of fluid compressibility and numerical accuracy
Simulations with various cylinder radii were performed to determine the effect

of changing the grid resolution on the frequencies and amplitudes of the spatially
averaged velocity fluctuations. Simulations of flows in unbounded periodic arrays were
also performed with four unit cells in the computational domain. These tests showed
that the most significant effect of increasing the grid resolution is to allow larger
Reynolds numbers to be achieved before the onset of numerical instability, rather
than significantly affecting the accuracy of the results. Furthermore, the simulations
of flows in unbounded periodic domains with four unit cells gave identical velocity
fields to those obtained from the simulations with a single unit cell, even at the highest
Reynolds numbers where the velocity fluctuations are chaotic. These comparisons are
elaborated in the thesis of Hill (2001).

In the remaining part of this section, the origin of spurious fluctuations in the
spatially averaged cross-stream momentum, which occur when the computational
domain is bounded by channel walls, is elucidated. With bounding walls, the deviation
of the primary axis of the cylinder array from the walls induces a mean pressure
gradient across the channel. Since the pressure is proportional to the density, this
pressure gradient is accompanied by a density gradient. For unsteady flows, the
fluctuating density gradient gives rise to a fluctuating spatially averaged cross-stream
momentum, which, for an incompressible fluid, should be identically zero.

Note that the cross-stream momentum, which we refer to as spurious here, would
not be identically zero for a real compressible fluid. Thus, while the lattice-Boltzmann
method does give the correct qualitative behaviour (the lattice-Boltzmann method
used in this work does not model the energy equation correctly) it does not describe
compressible flows exactly. Nevertheless, our goal is to understand incompressible
flows, and we have identified the compressibility of the fluid to be the most severe
limitation on the numerical accuracy of our simulations of wall-bounded flows. In the
following analysis, we show that compressibility does not necessarily affect the local
fluid velocity fluctuations. Furthermore, based on the Mach number and the ratio of
the cylinder radius to the lattice-node spacing, an upper limit on the width of the
channel is established.

We examine perturbations to a base state whose density and velocity are given
by ρ0 + yα/c2

s and (U, 0), respectively. Here, α is the time-averaged cross-stream
pressure gradient and U is the average fluid velocity, |〈u〉|. The ideal-gas equation of
state relates the pressure and density fluctuations via p′ = c2

s ρ
′, where p′ and ρ′ are

perturbations to the equilibrium pressure and density, respectively.
Substituting perturbations of the form ρ′ = yα′(t)/c2

s and (u′, v′) into the conti-
nuity equation, with α′(t) the perturbation to α, assuming that H(α + α′)/c2

s � ρ0,
and neglecting streamwise gradients, the cross-stream momentum (per unit volume)
resulting from the redistribution of mass across the channel width is

ρ0v
′ ∼ − 1

2
c−2
s α

′
t[y

2 − ( 1
2
H)2], (6)

which, when integrated over the channel width, gives the fluctuating spatially averaged
cross-stream momentum,

V (t)ρ0 ∼ − 1
12

(H/cs)
2α′t, (7)

where the subscript t indicates the time derivative. Averaging the square of (7) gives
the standard deviation of V in terms of the standard deviation of α′t,

〈V 2〉1/2 ∼ 1
12
U(MH/a)2〈Π2〉1/2, (8)
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H Re 〈V 2〉1/2a/ν 〈Π2〉1/2
82 38 0.037 0.014

51 0.097 0.015
62 0.25 0.026

164 39 0.11 0.0088
48 0.24 0.011
58 0.53 0.013
70 0.99 0.014

246 38 0.12 0.0049
48 0.51 0.010
55 3.3 0.044
68 8.8 0.061

Table 1. The effect of channel width and Reynolds number on the cross-stream velocity fluctuations
and scaled cross-stream fluctuating pressure gradient, from lattice-Boltzmann simulations of flow
in a wall-bounded periodic array of cylinders with a = 12.8 lattice units.

where M = U/cs is the Mach number and

Π = α′ta2/(ρ0U
3) (9)

is a dimensionless α′t, with the pressure gradient and time scaled with ρ0U
2/a and

a/U, respectively. It follows that 〈Π2〉1/2 should increase from zero at the critical
Reynolds number to an O(1) quantity at large Reynolds numbers.

To validate the scaling predicted by (8), a small number of simulations were
performed with three channel widths of 82, 164 and 246 lattice units, all with cylinder
radii of 12.8 lattice units. The cylinder configurations for these simulations were
obtained by first discarding the cylinders in the upper third and two-thirds of the full
domain shown in figure 1, and then displacing all the cylinders (by the same amount)
perpendicular to the channel walls, so that the distance between the cylinders closest
to the upper and lower walls were equal. Because we could not afford to increase
the channel width beyond 246 lattice units, the resulting velocity fields cannot be
expected to be self-similar with increasing channel width, and hence we should not
expect the data from these simulations to collapse perfectly. However, the differences
in the predicted 〈Π2〉1/2 should be much smaller than the corresponding variations in
〈V 2〉1/2.

Table 1 shows 〈Π2〉1/2 given by (8), where 〈V 2〉1/2 was obtained directly from the
simulations for the three channel widths and various Reynolds numbers. Despite the
systematic changes in 〈V 2〉1/2 with H and Re, the corresponding variations in 〈Π2〉1/2
are relatively small – the exceptions will be discussed shortly. The partial collapse of
the data confirms the scaling predicted by the theory, indicating that it captures the
origin of the compressibility artifact as well as confirming that the velocity fields are
incompressible on the length scale of the cylinder separation.

Note that an inertial scaling for the pressure gradient, α+ α′ = O(ρ0U
2/a), allows

the condition H(α + α′)/c2
s � ρ0 to be restated in terms of a constraint limiting the

channel width for a given grid resolution (cylinder radius) and Reynolds (Mach)
number, i.e. H � a/M2. At a Reynolds number of 80, for example, the Mach
number for a cylinder radius of 12.8 lattice units requires H � 2000 lattice units.
The channel width used for these computations satisfies this constraint, and hence
the density variations across the channel should be smaller than the nominal fluid
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Figure 2. Fourier spectra of (a) the cross-stream component of the fluctuating average velocity,
non-dimensionalized with ν/a to give a Reynolds number, and (b) the streamwise component of
the fluctuating drag force (per unit length) on cylinder number 11 shown in figure 1. These results
are from a lattice-Boltzmann simulation of flow in a wall-bounded periodic array of cylinders
with (c, a, H, Re) = (0.214, 12.8, 246, 68.4), where a and H are in lattice units. The energy of the
fluctuating spatially averaged cross-stream momentum is contained in a small range of frequencies,
and the small-scale velocity fluctuations, which affect the fluctuating forces on individual cylinders,
are practically independent of the large-scale density fluctuations.

density. Clearly, increasing the Reynolds number requires either a narrower channel
or a finer grid (larger a) to keep the density fluctuations small relative to the mean.

Note the ostensibly large values of 〈Π2〉1/2 at the two largest Reynolds numbers
for the simulations whose channel width is 246 lattice units. In these cases, we
suspect that the fluctuating cross-stream momentum is amplified by a resonance of
the underlying small-scale velocity fluctuations with the propagation of sound waves
across the channel width. This explanation is based on the fact that the frequency
corresponding to the time for disturbances travelling at the sound speed to traverse the
channel width twice is cs/(2L) = 23.5ν/a2, and, as shown in § 7.2.2, the fundamental
frequency of the underlying velocity fluctuations reaches this resonant frequency when
Re ∼ 70.

Despite this resonance, the cross-stream momentum fluctuations in the widest
channel, at Reynolds numbers greater than approximately 60, do not appear to
significantly affect the small-scale velocity fluctuations. This is demonstrated by the
comparison in figure 2 of the Fourier spectrum of the fluctuating spatially averaged
cross-stream velocity with that of the fluctuating streamwise component of the force
on a single cylinder, the latter providing a measure of the local velocity fluctuations.
The energy in the fluctuating cross-stream momentum is contained in a small range
of frequencies close to the resonant frequency, whereas the energy associated with the
local velocity fluctuations is distributed over a much wider range of frequencies. This
separation in time scales suggests that the local dynamics are not dominated by the
large-scale density fluctuations.

There are, of course, components of the small-scale velocity fluctuations that
are coupled to the spurious cross-stream momentum flux, particularly in the cross-
stream direction (see figure 13). However, the energy contained in these modes,
at the large Reynolds numbers where the resonance occurs, is small compared to
the total fluctuating energy. In conclusion, these results show that care must taken
when interpreting the Fourier spectra not to mistake the typically large peak, whose
frequency is practically independent of the Reynolds number, for the fundamental
frequency of the underlying small-scale velocity fluctuations. In general, this is difficult,
because this peak is amplified when the fundamental frequency is close to that for
sound waves to traverse the channel width twice.
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(a) (b)

Figure 3. (a) A typical photographic image of the recirculating flow behind a cylinder close
to the centreline of the channel used in the experimental apparatus (a, c, Re, l/(2a)) =
(2.5 mm, 0.196, 10 ± 1, 0.25 ± 0.02). (b) Streamlines obtained from a lattice-Boltzmann simulation
of flow in an unbounded periodic array of cylinders with a similar Reynolds number to the flow
visualized in (a).

5. Experiment
The experimental apparatus consisted of a long square channel whose internal

dimensions were 5 cm×5 cm×100 cm. Inside, approximately 510 brass cylinders, with
an outside diameter of 5 mm, were fixed in a square array by inserting their ends into
holes drilled into two opposite walls of the channel. The primary axis of the array
was directed at an angle of π/6 from the channel walls. To highlight the regions of
recirculating flow in the wakes of the cylinders, food colouring, diluted with water,
could be continuously injected into the flow from the tip of an hyperdermic needle.

At Reynolds numbers close to the critical Reynolds number, the dominant fre-
quency of the fluid velocity fluctuations could be determined by measuring the time
for a fixed number of oscillations in the wakes. Typically, 10–30 oscillations were
counted, using either a stop-watch or a high-speed camera.

The length of the steady wakes behind the cylinders was determined by taking still
photographs of the dye tracer in the flow and scaling the wake length, as seen in the
digital images, with the corresponding cylinder diameter. The length of the wakes is
defined as the distance from the cylinder surface, along a straight line bisecting the
cylinder, to the downstream tip of the wake.

At the smallest Reynolds numbers, the wakes behind the cylinders close to the
channel centreline were most easily visualized by injecting a pulse of dye into the
flow. Since dye in the steady wakes is bounded by closed streamlines, these wakes
appeared dark against a light outer flow in which the dye was rapidly convected
downstream. Figure 3 shows a typical example of a photographic image (a) of the
wake behind a cylinder close to the channel centreline. This is compared with the
streamlines obtained from a simulation (b) with a similar Reynolds number. Molecular
diffusion allows a small quantity of dye to diffuse from the downstream tip of the
wake, making the tip appear slightly longer and more pointed than it actually is.

At larger Reynolds numbers, it was convenient to release a continuous stream of
dye into the flow. In this case, molecular diffusion, together with the slowly moving
fluid close to the cylinder surfaces, allowed the dye to disperse around the upstream
surfaces of the cylinders. Consequently, the wakes appeared light with a relatively
dark outline. Again, a small quantity of dye diffused across the streamlines that
separate the recirculating wake region from the outer flow.
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(a) (b)

(c) (d )

Figure 4. Streamlines from lattice-Boltzmann simulations of Stokes flow and steady finite-Reynolds-
number flows in an unbounded periodic array of cylinders with (c, θu, a) = (0.193, π/6, 24.8), where
a is in lattice units. The crosses identify the downstream tips of the wakes and the centres of the
two counter-recirculating vortices. (a) Re = 0, (b) Re = 11.7, (c) Re = 21.0, (d) Re = 32.0.

The largest source of uncertainty in determining the wake lengths from the pho-
tographic images came from identifying the cylinder surfaces, which, as shown in
figure 3, were blurred because of the finite depth-of-field. While some errors have
fixed absolute values, and others have fixed relative values, no attempt was made to
separate the systematic and statistical errors in the measured quantities.

The experimentally determined wake lengths, for steady flows, and the frequency of
the oscillations in the unsteady wakes, are compared to those from lattice-Boltzmann
simulations in figures 5 and 9, respectively. Here, we note that the transition to
unsteady flow occurred at a critical Reynolds number of approximately 33 ± 3, and
that the dimensionless fundamental frequency at the onset of unsteady flow was
approximately 9± 1 (Hill 2001).

6. Wake length and topology for steady flows
Wake lengths from the simulations were determined by locating positions where

both the x- and y-components of the velocity changed sign. For steady flows, such
points identify the location of the downstream tips of the wakes and the centres of
the two counter-recirculating vortices.

Figure 4 shows streamlines from simulations of steady flows in unbounded periodic
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Figure 5. The dimensionless length of the recirculating flow attached to the rear of the cylinders
as a function of the Reynolds number. The squares are from experiments, and the circles are
from lattice-Boltzmann simulations of flows in an unbounded periodic array of cylinders with
(c, θp, a) = (0.193, π/6, 24.8), where a is in lattice units. The solid line is the power-law fit given by
(10), and the dotted line is a linear fit (11) to the experimental results of Taneda (1956) for a single
cylinder in an unbounded fluid.

arrays of cylinders. The downstream tips of the wakes and the centres of the two
counter-recirculating vortices are identified with crosses. In this geometry, the length
of the wakes is limited by the competition between the slowly recirculating flow and
the rapidly moving outer flow to fill the gaps between the cylinders. The wakes shown
in figure 4 are considerably more elongated at larger Reynolds numbers than those
for flow along the primary axis of symmetry of a body-centred array of cylinders
(Bittleston 1986).

The length of the steady wakes is shown as a function of the Reynolds number
in figure 5. The simulation results (circles) are given to a good approximation by the
power-law fit

l/(2a) = 0.401(Re/8.07− 1)0.6, (10)

suggesting that streamlines first separate from the cylinders at a Reynolds number
of approximately 8.1. The good agreement between the simulations and experiments
(squares) confirms the accuracy of the simulations, and shows that the effect of the
bounding walls can be neglected near the channel centreline. The critical Reynolds
number beyond which the flow is unsteady is approximately 34.6, and hence the
dimensionless wake length at the transition to unsteady flow is l/(2a) = 0.82.

Taneda (1956) measured the wake length for a single cylinder in a practically
unbounded fluid. From his experimental results, the wake length is given to a good
approximation by the fit

l/(2a) = 0.377(Re/3.0− 1), (11)

which is shown as the dotted line in figure 5. For a single cylinder, the critical
Reynolds number for the transition to unsteady flow is approximately 25 (Williamson
1989), and hence the dimensionless wake length at the transition to unsteady flow is
l/(2a) = 2.76.

Bittleston (1986), using finite-difference computations, found a nonlinear dependence
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Figure 6. Time series of the spatially averaged velocity, non-dimensionalized with ν/a to give a
Reynolds number, from lattice-Boltzmann simulations of flows in an unbounded periodic array of
cylinders with (c, θu, a) = (0.193, π/6, 24.8), where a is in lattice units. For the simulation with a time
series chaotic, the Reynolds number is approximately 115 and (c, θu, a) = (0.194, π/6, 41.8).

of the wake length on the Reynolds number for flow along the primary axis of sym-
metry of a body-centred array of aligned cylinders with a solid volume fraction of
0.0765, with a cylinder separation in the flow direction 2.53 times that in the cross-
steam direction. A critical Reynolds number was not identified, but the flow remained
steady at Reynolds numbers up to 80, and the dimensionless wake length approached
a constant close to one.

Clearly, the geometry of the array, and the direction of the flow relative to it, play
an important role in determining the shapes of the wakes attached to the cylinders.
Confining the wakes decreases their length and increases the Reynolds number
at which streamlines first separate from the cylinders. Furthermore, increasing the
slenderness of the steady wakes, as measured by the ratio l/(2a), tends to decrease the
critical Reynolds number. Therefore, the transition to unsteady flow in square arrays
of cylinders, for example, might be expected to occur at larger Reynolds numbers
when the flow is directed along the primary axis. Increasing the solid volume fraction
should have a similar effect, provided that the structure of the wakes does not change
significantly on increasing the solid volume fraction.

7. Dynamics
For unbounded periodic arrays of cylinders, the average velocity undergoes approx-

imately sinusoidal oscillations at relatively low Reynolds numbers, with an amplitude
that increases with the Reynolds number. As can be seen in figure 6, the dom-
inant frequency also increases with the Reynolds number, and modes with both
higher and lower frequencies are excited at larger Reynolds numbers (see figure 7).
Period-doubling occurs at Reynolds numbers between approximately 85 and 115.
Unfortunately, it is computationally impractical to determine the Reynolds numbers
at which the bifurcations occur, because small changes in the direction of the ap-
plied pressure gradient, or body force, result in large changes in the flow direction,
particularly at the higher Reynolds numbers.
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Figure 7. Fourier spectra of (a) the fluctuating spatially averaged velocity and (b) the x-component
of the fluctuating drag force from a lattice-Boltzmann simulation of flow in an unbounded periodic
array of cylinders with (Re, c, θp, θu, a) = (100, 0.193, 0.80 π/4, 0.689 π/4, 24.8), where a is in lattice
units. The arrows identify peaks corresponding to the fundamental frequency, whose dependence on
the Reynolds number is shown in figure 9. The time series from which these spectra were obtained
were first divided by their respective time-averaged values and then the mean was subtracted.

Fourier spectra of the spatially averaged velocity and the drag force on a single
cylinder in an unbounded periodic array of cylinders are shown in figure 7. While
the relative strength of the various Fourier modes in each spectrum may be different,
the fundamental frequency can still be easily identified. Clearly, the transition from
periodic to chaotic flow occurs via period-doubling as opposed to quasi-periodic
dynamics, similarly to when the direction of the average pressure gradient is fixed
(Koch & Ladd 1997).

7.1. Hopf bifurcation

The transition to unsteady flow occurs through the weakly nonlinear interaction of
two spatial modes whose amplitudes fluctuate sinusoidally in time. The amplitude of
the fluctuating spatially averaged velocity, non-dimensionalized to give a Reynolds
number, is given to a good approximation by the fit

A1 = 0.938(Re/34.6− 1)1/2 + 0.396(Re/34.6− 1), (12)

which is shown in figure 8 as the solid line. The critical Reynolds number of 34.6 is
in good agreement with the experimentally determined value of 33± 3.

Close to the critical Reynolds number, the amplitude of the fluctuating spatially
averaged velocity increases with the square root of the Reynolds number. With
reasonable certainty, therefore, the transition to unsteady flow in an unbounded
periodic array of cylinders occurs via a super-critical Hopf bifurcation (Wiggins
1990). This excludes the possibility of observing unsteady flows at smaller Reynolds
numbers. Such flows would require finite-amplitude disturbances to initiate them,
and they would be considerably more difficult to examine, both computationally and
experimentally.

The range of Reynolds numbers over which the scaling given by (12) is accurate
corresponds to a small parameter ε = Re/Rec− 1 being less than approximately 0.05.
The range of Reynolds numbers where the dynamics are dominated by the nonlinear
interaction of only two unstable modes is therefore very small. At larger Reynolds
numbers, the dynamics are dominated by the nonlinear interactions between an
increasing number of unstable modes.

Schatz, Dwight & Swinney (1995) studied the transition to unsteady flow in a
channel with a streamwise periodic array of cylinders close to one of the walls.
Their experiments and computations show that unsteady flow develops at a Reynolds
number based on the channel half-width of approximately 130. While they point
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Figure 8. The amplitude of the fluctuating spatially averaged velocity, non-dimensionalized with
ν/a to give a Reynolds number, as a function of the Reynolds number based on the spatially and
temporally averaged velocity. The symbols are from lattice-Boltzmann simulations of flows in an
unbounded periodic array of cylinders with (c, θu, a) = (0.193, π/6, 24.8), where a is in lattice units.
The solid line is the fit given by (12), and the dotted line is the first term in (12).

out that this Reynolds number is significantly smaller than that for the transition to
turbulence in the absence of the cylinders, it is interesting to note that the Reynolds
number based on the cylinder radius is about 26, which is close to the critical
Reynolds number identified here – the weakly nonlinear regime also corresponds to
a supercritical Hopf bifurcation. Thus, while the cylinder configuration in their study
is very different to ours – the channel width was 10 times the cylinder radius – the
global dynamics appear to be very much influenced by the velocity fluctuations at the
length scale of the cylinders, rather than the channel width.

7.2. Fundamental frequency

Figure 9 compares the dimensionless fundamental frequency of unbounded and
wall-bounded arrays of cylinders as a function of the Reynolds number. Despite
the solid volume fractions being very close, the fundamental frequencies from the
simulations of flows in unbounded arrays (circles) are significantly higher than those
from the experiments (triangles), which, of course, have bounding walls. At the
Reynolds numbers where the frequency increases linearly with the Reynolds number,
the simulation results for wall-bounded flows, identified in figure 9 by the squares
and diamonds for solid volume fractions of 0.214 and 0.249 are given to a good
approximation by the fits ω1a

2/ν = 0.303Re − 1.33 and ω1a
2/ν = 0.403Re − 1.93,

respectively. Assuming a linear dependence of the coefficients on the solid volume
fraction, the dimensionless frequency at a solid volume fraction corresponding to
that of the experiments (c = 0.196) is approximately ω1a

2/ν = 0.252Re − 1.02. This
is in reasonable agreement with the experiments, which, in the range of Reynolds
numbers 35–65, give ω1a

2/ν = 0.290Re − 0.80. Clearly, the fundamental frequencies
of the flows with bounding walls are lower than predicted by the simulations of flows
in unbounded periodic arrays.

With the onset of unsteady flow, the spatial periodicity of the wall-bounded flows
is broken at the length scale of the cylinder separation. The resulting increase in the
effective wake length is a likely explanation for the slower dynamics. Note that the
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Figure 9. The dimensionless frequency of the fluctuating spatially averaged velocity as a function of
the Reynolds number. The circles are from lattice-Boltzmann simulations of flows in an unbounded
periodic array of cylinders with (c, θu, a) = (0.193, π/6, 24.8), where a is in lattice units, and the
solid line is the fit given by (13). The triangles are from experiments (c = 0.196) and the squares
and diamonds are from lattice-Boltzmann simulations of flows in a wall-bounded periodic array of
cylinders with (c, θu, a) = (0.214, π/6, 12.8) and (0.249, π/6, 13.8), respectively. The dotted line is from
the experiments of Williamson (1989) for a single cylinder in an unbounded fluid given by (14).

Strouhal number, as defined by (5), compares the inverse fundamental frequency with
the time for disturbances to convect a distance of one cylinder radius. If, however, the
fundamental frequency is determined by the time it takes for disturbances to convect
along the wakes, then the Strouhal numbers based on the wake length should be
similar for flows with different wake lengths. At the transition to unsteady flow, for a
single cylinder in an unbounded fluid and for the cylinder arrays examined here, the
Strouhal numbers based on the wake lengths are 0.83 and 0.57, respectively. While
these are not the same, they are much closer than those based on the cylinder radius.
Consequently, the wake length provides a better estimate for the characteristic length
scale of the instability than the cylinder radius (or channel width).

Before examining details of dynamics in the unbounded and wall-bounded domains
separately, note that at Reynolds numbers greater than approximately 60, the fun-
damental frequency of the wall-bounded flows cannot be identified unambiguously.
This is because the fluctuations are chaotic and their energy is distributed over a wide
range of frequencies. It is not surprising, therefore, that it was also difficult to identify
the fundamental frequencies experimentally, as suggested by the relatively large error
bars at the largest Reynolds numbers in figure 9. The levelling-off of the experimen-
tally determined fundamental frequency possibly reflects the higher weighting given
to the lower-frequency, larger-amplitude modes. The almost constant frequency at the
largest Reynolds numbers suggested by the simulations (squares), reflects the peak in
the spectra from the spurious cross-stream momentum discussed in § 4. Recall that
this frequency corresponds to the time for sound waves to traverse the channel width
twice, and hence it is independent of the Reynolds number.

7.2.1. Unbounded spatially periodic flows

For flow in an unbounded periodic array of cylinders, increasing the Reynolds
number increases the number of modes with both higher and lower frequencies
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than the fundamental frequency. These can be identified most easily in the Fourier
spectrum of the spatially averaged velocity shown in figure 7 and, possibly, in the time
series of the spatially averaged velocities shown in figure 6. Until the onset of chaotic
dynamics, which occurs at a Reynolds number in the range 85–115, all the frequencies
in the spectra are commensurate with the fundamental frequency, confirming that the
chaotic dynamics occur via a sequence of period-doubling bifurcations.

At Reynolds numbers greater than approximately 100, the flow in unbounded
periodic arrays of cylinders is chaotic and the Fourier spectra have a continuous
range of frequencies with distinct peaks. Indeed, some care was required to identify
the peaks in the spectra corresponding to the fundamental frequency. In general, the
fundamental frequency can be identified in the spectra of both the spatially averaged
velocity and the drag force on the cylinders.

For unbounded periodic arrays of cylinders, the fundamental frequency increases
linearly with the Reynolds number, with a small quadratic correction at larger
Reynolds numbers. The simulation results identified with circles in figure 9 are given
to a good approximation by the fit

ω1a
2/ν = 12.1 + 14.2(Re/34.6− 1) + 0.924(Re/34.6− 1)2, (13)

which is shown as the solid line. The critical Reynolds number in (13) was obtained
from the dependence of the amplitude of the fluctuations on the Reynolds number,
given by (12), and hence the Strouhal number at the critical Reynolds number is
ωca

2/(νRec) = 12.1/34.6 = 0.35.
The dotted line in figure 9 is the fit

ω1a
2/ν = −0.8316 + 0.0908Re+ 1.6× 10−4Re2, (14)

to the experimental results of Williamson (1989) for the fundamental frequency of
the oscillations in the wake of a single cylinder in a practically unbounded fluid. The
Strouhal number at the critical Reynolds number of 25 is 0.062. Clearly, in addition to
increasing the critical Reynolds number, the confinement of the wakes in the cylinder
arrays significantly increases the frequency of the oscillations. As mentioned above,
this is expected based on the shorter wake length imposed by the confining geometry.

7.2.2. Wall-bounded flows

For wall-bounded flows at Reynolds numbers less than approximately 40, the
dynamics eventually become periodic, whereas at larger Reynolds numbers, chaotic
dynamics occur at much smaller Reynolds numbers than for unbounded periodic
arrays (figure 6). Time series of the spatially averaged velocity, non-dimensionalized
to give a Reynolds number, are shown in figure 10.

The Fourier spectrum of the time series at Reynolds number approximately 64.1
is shown in figure 11. The large peak at a dimensionless frequency of approximately
20 has already been associated with the time for sound waves to traverse the channel
width twice. At this relatively large Reynolds number, where the dynamics are chaotic,
the fundamental frequency is difficult to identify amongst the broad and continuous
range of frequencies in the spectrum. Instead, it is helpful to examine the dynamics
of the fluctuating forces on the cylinders, since these are more closely related to the
local velocity fluctuations.

The fundamental frequencies in figure 9 were obtained from the time series of both
the streamwise and cross-stream components of the drag force on cylinder number
11, whose position in the array is shown in figure 1. As the time series in figure 12
show, the fluctuating forces on the cylinders at relatively small Reynolds numbers
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Figure 10. Time series of the spatially averaged velocity, non-dimensionalized with ν/a to give a
Reynolds number, from lattice-Boltzmann simulations of flows in a wall-bounded periodic array of
cylinders with (c, θu, a) = (0.214, π/6, 12.8), where a is in lattice units. At Reynolds numbers less than
approximately 40, the time series eventually become periodic. The Fourier spectrum of the time
series from the simulation with a Reynolds number of approximately 64.1 is shown in figure 11.
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Figure 11. The Fourier spectrum of the streamwise component of the fluctuating spatially averaged
velocity, non-dimensionalized with ν/a to give a Reynolds number, from a simulation of unsteady
flow in a wall-bounded periodic array of cylinders with (Re, c, θu, a) = (64.1, 0.214, π/6, 12.8), where
a is in lattice units.

are almost periodic, but they are out of phase with one another. At larger Reynolds
numbers, however, the fluctuations are chaotic and relatively independent, suggesting
a breaking of the underlying spatial periodicity.

Figure 13 compares Fourier spectra of the time series of the streamwise and cross-
stream components of the drag force on cylinder number 11 at Reynolds numbers
of 43.5 and 64.1. At the smaller Reynolds number, the time series is not exactly
periodic, but is dominated by a mode whose frequency is ω1 and a higher-frequency
harmonic whose frequency is 2ω1. The satellite peaks in the spectra explain the
amplitude-modulation of the time series shown in figure 12. At the larger Reynolds
number, the frequency corresponding to the fluctuating spatially averaged cross-
stream momentum is easily identified in the spectrum of the fluctuating cross-stream
component of the drag force. In the streamwise direction, the peak with the largest
amplitude corresponds to a dimensionless frequency of 17.9. The linear increase of the
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Figure 12. Time series of the streamwise (non-zero mean) and cross-stream (zero mean) components
of the drag forces, non-dimensionalized with the average drag force, on two cylinders in the simulated
channel flows. These results are from lattice-Boltzmann simulations of flows in a wall-bounded
periodic array of cylinders with (c, a) = (0.214, 12.8), where a is in lattice units. The solid and dotted
lines identify cylinders 10 and 11, respectively, whose positions in the channel are shown in figure 1.
(a) Re = 25.4 (steady), (b) Re = 43.5 (ω1a

2/v = 11.8), (c) Re = 79.5.

fundamental frequency shown in figure 9, at the smaller Reynolds numbers, suggests
that this is the fundamental frequency of the underlying velocity fluctuations at this
Reynolds number.

8. Topology of unsteady flows
Figures 14–16 show streamlines of the flow in an unbounded periodic array of

cylinders at nominal Reynolds numbers of 35, 45 and 85, respectively. Each snapshot
of the flow corresponds to an equally spaced time throughout the fundamental
period of the fluctuations. The streamlines were obtained from contours of the
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Figure 13. Fourier spectra of the streamwise (left) and cross-stream (right) components of the
fluctuating drag force on cylinder number 11 obtained from lattice-Boltzmann simulations of flows
in a wall-bounded periodic array of cylinders with (c, a) = (0.214, 12.8). The spectra in (a) are
representative of the behaviour at smaller Reynolds numbers (43.5) when the flow is quasi-periodic,
whereas the spectra in (b) are representative of the behaviour at Reynolds numbers greater
than approximately 50 (64.1) when the flow is chaotic. The time series from which these spectra
were obtained were first divided by their respective time-averaged values and then the mean was
subtracted.

Figure 14. Streamlines obtained from lattice-Boltzmann simulations of unsteady flow in an un-
bounded periodic array of cylinders with (Re, θp, a, L) = (36.1, 0.81 π/4, 24.8, 100), where a and L are
in lattice units. In going from left to right, the time between each snapshot, ∆t, is 2000 time steps,
corresponding to ∆tν/a2 = 3.26× 10−2.

stream function, ψ, which was calculated from the velocity field using the relations
∂ψ/∂y = ux and ∂ψ/∂x = −uy .

At the smallest Reynolds number of 36.1, which is just above the critical Reynolds
number of 34.6, the oscillating flow corresponds to a side-to-side waving of the
wakes. As the sequence of images in figure 14 show, the displacement to each side
is approximately the same. There is also evidence of a ‘whipping’ motion at the tip,
where open streamlines are drawn backwards into a slowly moving region (widely
separated streamlines) outside the wake. In between the extremities of the waving
motion, the wake is similar in appearance to the steady wakes shown in figure 4.
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Figure 15. As figure 14 but with (Re, θp, a, L) = (46.6, 0.83 π/4, 24.8, 100). In going from left to right,
the time between each snapshot, ∆t, is 1200 time steps, corresponding to ∆tν/a2 = 1.95 × 10−2.

Figure 16. As figure 14 but with (Re, θp, a, L) = (84.4, 0.83 π/4, 24.8, 100). In going from left to right
and from top to bottom, the time between each snapshot, ∆t, is 300 time steps, corresponding to
∆tν/a2 = 4.88× 10−3.

At a larger Reynolds number of 46.6, vortices can be seen to shed from alternate
sides of the cylinders. The images in figure 15 show the shedding of a vortex from
the lower side of the cylinder. This sequence is similar to that of the remaining half
of the cycle, in which a vortex is shed from the upper side (Hill 2001). In the image
on the left, the vortex to be shed is still attached to the cylinder; it rapidly detaches,
leading to the closed streamlines seen in the second image. In the third image, all that
remains of the vortex is the region of distorted ‘u’-shaped streamlines.

With increasing Reynolds number, the velocity disturbance where the streamlines
separate furthest upstream from the cylinder surfaces increases. The streamlines
separating the inner and outer regions of the wake show that the volume of fluid
attached to the cylinders for any appreciable length of time is much smaller than
when the wakes are stationary. As shown in figure 16, at a Reynolds number of
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Figure 17. The variance of the streamwise (circles) and cross-stream (squares) components of the ve-
locity in an unbounded periodic array of cylinders (open symbols) and a wall-bounded periodic array
of cylinders (filled symbols). The upper two sets of symbols include both spatial and temporal fluctu-
ations in the velocity, u−〈u〉 = u1+u2, whereas the lower two, which begin with zero amplitude at the
critical Reynolds number of approximately 34, include only the time-dependent fluctuations of the
velocity, u2. These results are from lattice-Boltzmann simulations with (c, θu, a) = (0.193, π/6, 24.8)
(open symbols) and (c, a) = (0.214, 12.8) (filled symbols), where a is in lattice units. For the simulation
at Reynolds number approximately 115, (c, θu, a) = (0.194, π/6, 41.8).

84.4, this relatively small volume of fluid resides directly behind the cylinders, and is
characterized by a thin pointed tail on one side and a detaching vortex on the other.

Recall that the time series of the spatially averaged velocity is chaotic at a Reynolds
number of 116. Under these conditions, the sequence of alternate vortex shedding
identified above, at Reynolds numbers up to approximately 85, cannot be identified
unambiguously. Highly distorted vortices are seen to shed, with points of separation
occurring further upstream (Hill 2001). Clearly, the length and time scales diminish
with increasing Reynolds number, and hence the streamlines are increasingly distorted.

9. Spatial and temporal velocity fluctuations
The variances of the streamwise and cross-stream components of the velocity can

be used to quantitatively compare the spatial and temporal velocity fluctuations of
flows in wall-bounded and unbounded periodic arrays of cylinders. In this work, the
velocity is decomposed as

u = 〈u〉+ u1(x) + u2(x, t), (15)

where 〈u〉 is the spatially and temporally averaged velocity. Note that the spatial
averages of u1 and u2, and the temporal average of u2, are zero.

Figure 17 shows the variance of the streamwise (circles) and cross-stream (squares)
components of u1 + u2 and u2, as a function of the Reynolds number. The former is
a measure of the combined spatial and temporal fluctuations in the velocity, whereas
the latter quantifies only the temporal fluctuations. These results are from simulations
of flows in a wall-bounded array of cylinders (filled symbols) and an unbounded
periodic array of cylinders (open symbols). Spatial averaging was performed over
the entire computational domain, and, depending on the Reynolds number, temporal
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Figure 18. Grey-scale map of the magnitude of the velocity from a lattice-Boltzmann simulation of
Stokes flow (Re = 0) in a wall-bounded periodic array of cylinders with (c, a) = (0.214, 12.8), where
a is in lattice units.

averages were obtained from between 10 and 100 snapshots of the flows at evenly
spaced times spanning 1 to 4 periods of the fundamental oscillation. Including the
volume of the domain occupied by the stationary cylinders in the averaging is merely
for convenience. Values for the region occupied only by the fluid can be obtained
by suitable algebraic manipulations of the defining volume integrals. Here, we are
interested in examining relative rather then absolute values, and hence the distinction
is not important.

The small difference between the variances for wall-bounded and unbounded spa-
tially periodic flows when the Reynolds number is zero is because of the small
difference in the solid volume fractions, as well as the discontinuity of the geometry
at the bounds of the domain. With increasing Reynolds number, the distance over
which the walls disturb the flow diminishes, and hence the contribution to the vel-
ocity variances from the inhomogeneity at the walls should diminish with increasing
Reynolds number. The variances of the steady flows are practically the same, con-
firming that the walls do not affect the flow over most of the channel width. However,
as the Reynolds number increases beyond the critical value, approximately 35, the
variance of both the streamwise and cross-stream components of the velocity increase
more rapidly when there are bounding walls. This is almost entirely because of the
growth of the temporal fluctuations.

With bounding walls, the variance of the streamwise and cross-stream components
of u2 are practically equal, whereas the cross-stream components are slightly larger
in the absence of walls. This difference may be interpreted as the walls suppressing
the temporal velocity fluctuations in the cross-stream direction more than in the
streamwise direction. Note also that the fluctuating energy is partitioned equally in
the streamwise and cross-stream directions, whereas the time-averaged spatial velocity
fluctuations are considerably larger in the streamwise direction.

The velocity distribution for a Stokes flow (Re = 0) is shown in figure 18, where
the light and dark tones correspond to high and low velocities, respectively. The
velocity field is spatially periodic at the length scale corresponding to the cylinder
separation, and has local for–aft symmetry about each of the cylinders. In contrast to
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Figure 19. Grey-scale maps of (a) the magnitude of the velocity and (b) the spatial pressure or
density fluctuations obtained from a lattice-Boltzmann simulation of a steady flow in a wall-bounded
periodic array of cylinders with (Re, c, a) = (25.4, 0.214, 12.8), where a is in lattice units.

the finite-Reynolds-number flows shown below in figures 19 and 20, the fluid velocity
between the walls and the cylinders closest the walls is very slow.

At a Reynolds number of 25.4, the velocity distribution shown in figure 19(a) is
also spatially periodic at the length scale corresponding to the cylinder separation,
but obviously does not have local for–aft symmetry about each of the cylinders. The
spatial distribution of the fluid density, which is proportional to the pressure, is shown
in figure 19(b), where the light and dark tones correspond to high and low pressures,
respectively. As expected from Bernoulli’s equation for potential flow, the highest and
lowest pressures occur on the upstream faces and sides of the cylinders, respectively.

At a Reynolds number of 79.5, where the temporal velocity fluctuations are chaotic,
the spatial periodicity of the velocity field, as seen in the snapshot of the velocity
distribution in figure 20(a), is broken. The time-averaged velocity field, whose velocity
distribution is shown in figure 20(b), is spatially periodic at the length scale of the
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Figure 20. Grey-scale maps of the magnitude of the velocity from a lattice-Boltzmann simulation
of unsteady flow in a wall-bounded periodic array of cylinders with (Re, c, a) = (79.5, 0.214, 12.8),
where a is in lattice units. The image in (a) is a snapshot of the flow, whereas the image in (b) is
from the time-averaged velocity field.

cylinder separation. While the time-averaged velocity fields for unbounded periodic
and wall-bounded flows are similar, the comparison of their velocity variances above
(see figure 17) shows they are not the same.

10. Drag force
10.1. Streamwise drag force

The dimensionless drag force on the cylinders in wall-bounded and unbounded
periodic arrays increases approximately linearly with the Reynolds number over a
wide range of Reynolds numbers. The simulation results shown in figure 21 for
cylinders in unbounded periodic arrays (circles) are given to a good approximation
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Figure 21. The dimensionless drag force as a function of the Reynolds number. The circles
are from lattice-Boltzmann simulations of flows in unbounded periodic arrays of cylinders with
(a, θu, c) = (24.8, π/6, 0.193) (open) and (41.8, π/6, 0.194) (filled), respectively, where a is in lattice
units. The line is the fit given by (16), and the squares and diamonds are from simulations of flows
in wall-bounded periodic arrays of cylinders with (a, θu, c) = (12.8, π/6, 0.214) and (13.8, π/6, 0.249),
respectively.

by the fit

F = 49.45 + 2.99Re+ 0.0232Re2 − 0.0001695Re3. (16)

Note that this equation does not have the correct asymptotic behaviour in the limit
Re→ 0, which actually takes the form F = F0 + F1Re

2, where F0 is the dimensionless
Stokes-flow drag force and F1 is a coefficient that depends on the direction of the
flow (Koch & Ladd 1997). Nevertheless, it is a good approximation at the moderate
Reynolds numbers of interest here. Although F increases almost linearly with Re,
there is a tendency for ∂F/∂Re to decrease slowly with increasing Re, particularly
at the largest Reynolds numbers shown. Simulations with a larger cylinder radius of
41.8 lattice units (filled circles) show that this is not because of the diminishing grid
resolution with increasing Reynolds number.

Also shown in figure 21 is the dimensionless streamwise component of the drag force
on cylinder number 11, obtained from the simulations of flow in wall-bounded arrays
of cylinders with solid volume fractions of 0.204 (squares) and 0.249 (diamonds).
The dimensionless drag force was calculated by averaging the streamwise component
of the drag force on the cylinder and using the velocity averaged over the entire
computational domain. With bounding walls, F increases linearly with Re over the
entire range of Reynolds numbers, in contrast to the slight decrease in ∂F/∂Re with
Re for the unbounded periodic domain.

The linear dependence of F on Re may be attributed to the constrained flow
direction and, hence, the approximately self-similar velocity field with increasing
Reynolds number. Note that, when the direction of the pressure gradient is fixed and
the direction of the average velocity is allowed to change, ∂F/∂Re decreases much
more rapidly with increasing Re (Koch & Ladd 1997), because the spatially averaged
velocity becomes increasingly aligned with the primary axis of the array.

The drag force on cylinder number 11 – the cylinder furthest from the bounds of the
computational domain – is practically the same as the average drag force on all the
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Figure 22. The cross-stream component of the average drag force as a function of the Reynolds
number from lattice-Boltzmann simulations of flows in an unbounded periodic array of cylinders
with (c, θu, a) = (0.193, π/6, 24.8), where a is in lattice units. The horizontal line corresponds to
Stokes flow (Re = 0), for which the cross-stream component of the average drag force is identically
zero and the average pressure gradient is in the same direction as the spatially averaged velocity.

cylinders and the walls (see figure 23). Furthermore, for solid volume fractions of 0.214
and 0.249, the dimensionless drag forces, in the range of Reynolds numbers where
they increase linearly with the Reynolds number, are given to a good approximation
by the fits F = 47.9 + 4.02Re and F = 65.1 + 4.36Re, respectively. Assuming a linear
dependence of the coefficients on the solid volume fraction, the dimensionless drag
force is approximately F = 37.6+3.82Re at a solid volume fraction of 0.193. Over the
same range of Reynolds numbers, this equation gives almost exactly the same drag
force as obtained directly from the simulations of flows in the unbounded periodic
domain. The bounding walls, therefore, do not significantly affect the average drag
forces on the cylinders furthest from the walls.

10.2. Lift force

The cross-stream component of the drag force on the cylinders in an unbounded
periodic array, shown in figure 22 as a function of the Reynolds number, may be as
large as 10% of the total drag force. Assuming that similar behaviour occurs with the
presence of bounding walls, these results show that a considerable pressure gradient
may develop across the width of such a channel. This pressure gradient would drive
a neutrally buoyant particle in the fluid toward the upper wall of the channel in
figure 18. It is interesting to note that there is a relatively small range of Reynolds
numbers where the cross-stream component of the drag force is actually negative, i.e.
where θp is greater than θu.

10.3. Spatial and temporal fluctuations

The average and standard deviation of the fluctuating drag forces on each of the
cylinders in the simulations with bounding walls, at nominal Reynolds numbers
of approximately 0, 25, 45 and 80, respectively, are shown in figure 23. Both the
streamwise (circles) and cross-stream (squares) components of the drag forces are
shown. The abscissa identifies the cylinders whose positions in the channel are shown
in figure 1. Note that the upper and lower walls were treated as a single entity in the



Flow in a wall-bounded porous medium 341

3

2

1

0

–1
1 5 9 13 17 21 25

(a)

f x
/〈

f〉
, 

f y
/〈

f〉

3

2

1

0

–1
1 5 9 13 17 21 25

(b)

3

2

1

0

–1
1 5 9 13 17 21 25

(c)

f x
/〈

f〉
, 

f y
/〈

f〉

3

2

1

0

–1

1 5 9 13 17 21 25

(d )

–2

i i

Figure 23. The streamwise (circles) and cross-stream (squares) components of the forces,
non-dimensionalized with the average drag force, on the 26 cylinders (i = 2 . . . 27) and the wall
(i = 1). These results are from lattice-Boltzmann simulations of flows in wall-bounded periodic ar-
rays of cylinders with (c, a) = (0.214, 12.8), where a is in lattice units. The positions of the cylinders
within the channel are shown in figure 1, and the ‘error’ bars indicate one standard deviation in the
temporal fluctuations. (a) Re = 3.34× 10−3, (b) Re = 25.4 (steady), (c) Re = 43.6, (d) Re = 79.5.

simulations, owing to the use of periodic boundary conditions, and in the following
discussion the upper and lower walls will be referred to as a single wall, identified by
i = 1.

The streamwise component of the drag force on the wall is proportional to its
surface area, which is approximately 7.5 times larger than that of a single cylinder.
Since the cylinders also have a form-drag contribution, the streamwise component
of the drag force on the wall is actually much less than 7.5 times that on a single
cylinder.

The cross-stream component of the drag force on the wall is because of the cross-
stream pressure gradient generated by the lift forces on the cylinders. Consequently,
the cross-stream component of the drag force on the wall is equal to the negative
of the sum of the cross-stream components of the forces on all the cylinders. For
unsteady flows, the fluctuating force on the wall is very large, and hence the ‘error’
bars, which indicate one standard deviation of the fluctuations from the mean, cannot
be seen on the axes used in figure 23. Note that part of the contribution to this
fluctuating force is from the spurious fluctuating cross-stream momentum discussed
in § 4.

The cylinders whose drag force appears to be far from the average are those very
close the walls – cylinders 2, 19 and 22, for example. The cross-stream components of
the drag forces on these cylinders are significantly larger than those on the cylinders
closer to the channel centreline. Furthermore, the cross-stream component of the drag
force on these cylinders acts toward the channel centreline, whereas the drag force on
the cylinders away from the walls is in the negative y-direction, as should be expected
based on the lift force shown in figure 22.

It is interesting to note that the lift forces on the cylinders closest to the walls
are particularly large because of the effects of fluid inertia. This can be seen by
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Figure 24. The time-averaged streamwise component of the velocity, averaged along the length
of the channel, as a function of the distance across the channel width. These results are from
lattice-Boltzmann simulations of flows in a wall-bounded array of cylinders with (c, a, H) =
(0.204, 12.8, 246), where a and H are in lattice units. The lines correspond to Reynolds numbers of
3.34× 10−3 (solid), 25.4 (dotted) and 79.5 (dashed).

comparing the cross-stream components of the drag forces on cylinders 2, 19 and 22
in figure 23(a) with those in figures 23(b) and 23(c). Recall that, at finite Reynolds
numbers, the fluid velocity between these cylinders and the channel walls was shown
in figure 20, for example, to be significantly faster than the average, whereas for
Stokes flow, the velocity there is relatively slow.

The length scale over which the walls affect the average velocity at macroscopic or
continuum length scales is indicated by the velocity profiles shown in figure 24 for
nominal Reynolds numbers of 0, 25 and 80. The time-averaged streamwise component
of the velocity is averaged over the length of the channel. Maier et al. (1998) showed
similar results for a randomly packed cylinder of spheres, but the range of Reynolds
numbers was considerably smaller than considered here. Clearly, it is only at finite
Reynolds numbers that the fluid is able to maintain a large velocity close to the walls.
This effect is similar to that indicated by the simulations of Andrade et al. (1997),
whereby fluid flowing through a two-dimensional random array of squares undergoes
much smaller changes in direction at finite Reynolds numbers than Stokes flow in the
same geometry.

10.4. Spatial correlation

The dye tracer used in the experiments clearly identified a breaking of spatial peri-
odicity at Reynolds numbers where the velocity fluctuations are chaotic (Hill 2001).
Consequently, the temporal velocity fluctuations, and hence the fluctuating drag forces
on the cylinders, become uncorrelated at distances beyond their periodic unit cell.

Table 2 shows the correlation coefficients, obtained from simulations, of the x- and
y-components of the drag forces on various pairs of cylinders at a Reynolds number
of 78.4. The correlation coefficient for cylinders i and j is

ρij = 〈f′if′j〉/(〈f′i2〉〈f′j2〉)1/2, (17)

where f′ = f − 〈f〉 is the deviation of either the x- or y-component of the drag force
from its respective time-averaged value. Because of the finite size of the computational
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ρij ρij
r j (x) (y)

L 5 0.231 0.225
17 0.123 0.236
12 −0.117 0.300
10 −0.0270 0.243

√
2L 6 −0.132 0.544

16 −0.0266 0.520
18 0.126 0.105
4 0.175 0.323

√
5L 13 0.135 0.326

9 0.0827 0.410
22 −0.0580 0.00932
24 −0.0157 0.145

Table 2. Correlation coefficients of the x- and y-components of the drag force on cylinder number
11 with its nearest (upper section), next-nearest (middle section) and next-next-nearest neighbours
(lower section). These results are from lattice-Boltzmann simulations of flow in a wall-bounded
array of cylinders with (c, a, Re) = (0.214, 12.8, 79.5). The positions of the cylinders (i = 11) and j in
the computational domain are shown in figure 1.

domain, correlation coefficients averaged over all pairs of cylinders with the same
separation vector rij are not shown. However, the successive pairs in table 2 do have
the same rij , and hence the difference between them gives some indication of the
spatial inhomogeneity.

Clearly, the spatial periodicity is broken by the presence of the bounding walls. The
strongest correlation in the x- and y-components of the drag forces occurs between
nearest and next-nearest neighbouring cylinders, respectively, and the correlation
depends very much on the direction of r, not just its magnitude.

11. Summary
The lattice-Boltzmann method has been used to compute moderate-Reynolds-

number flows in unbounded and wall-bounded periodic arrays of aligned cylinders.
Direct, quantitative comparisons of the wake length, for steady flows, and the fun-
damental frequency, for unsteady flows, were made with experimental measurements.
From the simulations, details of the flows, such as the spatial and temporal fluctu-
ations of the fluid velocity and forces on the cylinders, as well as time-averaged values,
were examined.

For steady flows, the lengths of wakes behind the cylinders in an unbounded per-
iodic array were in good agreement with those measured experimentally. Therefore,
the distance over which the walls influence the flow is comparable to the cylinder
separation. For unsteady flows, however, the fundamental frequencies from the simu-
lations of flows in unbounded periodic arrays of cylinders were significantly higher
than those for wall-bounded arrays. Under these conditions, the walls affect the flows
everywhere in the domain, not just close to the walls.

With the onset of unsteady flow in the wall-bounded arrays of cylinders, the spatial
periodicity, at the length scale of the cylinder separation, is broken. This increases
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the effective length of the wakes behind the cylinders, and results in slower dynamics,
because it takes longer for disturbances to convect the larger distance.

For unbounded periodic arrays of cylinders, the transition to unsteady flow occurs
via a super-critical Hopf bifurcation, and the transition to chaotic dynamics occurs
via a sequence of period-doubling bifurcations. With bounding walls, however, the
transition to chaotic dynamics occurs via quasi-periodicity, and the transition occurs
at much smaller Reynolds numbers.
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